

杜伟韬 duweitao@cuc.edu.cn

数字化工程中心 中国传媒大学

致 谢

- 感谢各种网络文档
- 此处不一一列出,向原作者一并致谢
- 特别感谢: 某洁癖爱好者同学

- Matlab , Quartus , DSP builder
- Altera和Matlab的版本关系如下:

Tool	Version		
DSP Builder	14.1	14.0	13.1
The MathWorks (MATLAB and Simulink) ⁽¹⁾	R2012b R2013a R2013b R2014a R2014b	R2012a R2012b R2013a R2013b R2014a	R2012a R2012b R2013a R2013b

G Installing DSP Builder 13.1.0.162	
DSP Builder Setup	
Specify the location of your MATLAB installation Skip MATLAB To install DSP Builder shortcuts, select one or more MATLAB installati MATLAB R2012b (32-bit) (C:\Program Files (x86)\MATLAB\R2012	ons from the list below. (b)
Specify MATLAB installation (Only version R2012a and above are su C.\Program Files\MATLAB\MATLAB Production Server\R2013b	pported)

安装DSP builder 时 指定一下配套版本 的Matlab 目录

从 DSP Builder 启动 Matlab

- DSP Builder 启动Matlab时,
 - 会配置 Altera 和 Matlab之
- 间交互数据的环境信息

LAB1 MATLAB GUI

- 演示功能:
- - 2个按钮,频率增加、频率降低
- - 按下按钮绘制不同频率的曲线
- -运行 Demo,执行目录中的 main.M 文件

LAB1 设计要点

- 使用 GUIDE设计布局, 生成初始代码
- 对于每个控件,使用属 性编辑对话框。
- 注意 Tag 条目,这是一个控件的重要ID

Part Inspector: uicontrol (pb_f_up	"频率增加") 📃 🗖	X	
rionzontan ingriment	center		
Interruptible	on	*	
KeyPressFcn	a	Ø	
ListboxTop	1.0	Ø	
Max	1.0	Ø	
Min	0.0	Ø	
Position	[64.143 1.25 21.714 2.55]		
SelectionHighlight	on	*	
🗄 SliderStep	[0.01 0.1]		
String	■ 频率增加	ø	
Style	pushbutton	٣	
Tag	pb_f_up	1	
TooltipString		ø	
UIContextMenu	<none></none>	*	Ξ
Units	characters	*	
UserData	[0x0 double array]	ø	
Value	[0]		
Visible	on	*	Ŧ

LAB1 代码结构要点

- 使用handle挂载自定义的数据
- 要使用guidata 函数才能保存 数据

```
不同的按钮按下后,会触发
各自对应的Callback函数运行。
```

• 在相应的Callback中修改对 应的标志变量

ullet

% --- Executes just before M_gui is made visible. function M_gui_OpeningFcn(hObject, eventdata, handles, varargin) -% This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MAILAB structure with handles and user data (see GUIDATA) % handles % varargin command line arguments to M gui (see VARARGIN) handles.f cnt = 0; % Choose default command line output for M gui handles.output = hObject; % Update handles structure guidata(hObject, handles); % ---- Executes on button press in pb f up. function pb f up Callback (hObject, eventdata, handles) handle to pb f up (see GCBO) - % hObject % eventdata reserved - to be defined in a future version of MAILAB % handles structure with handles and user data (see GUIDATA) f cnt = handles.f cnt; $f_cnt = f_cnt + 1;$ handles.f_cnt = f_cnt; % Update handles structure guidata(hObject, handles);

LAB1 代码结构要点 Cont

- GUI 任务和数据处理任务的隔离
- 尽量只在GUIDE生成的M文件中编 写和UI相关的代码
- 数据处理和调度代码,放到其他文 件中,本例中为main.m文件

```
% running gui M file, get the figure handle
```

```
M = M_gui;
```

```
g = guidata(M);
```

```
ga = g.axes1;
```

M = M_gui,执行M_gui.m 得到数据句柄
• g = guidata(M) 取出图形的数据结构
• ga = g.axes1 取出绘图坐标系统的句柄

频率降低 按钮 函数 pb_f_down_Callback() 减少变量 f_cnt 的数值
频率增加 按钮 函数 pb_f_up_Callback() 增加变量 f_cnt 的数值
main.m 主循环 循环读取 f_cnt 数值 判断 f_cnt 是否发生变化 如果发生变化,说明GUI上 出现用户动作 则,重新生成曲线数值 更新绘制曲线

LAB 2: Matlab 读取 Signaltap 数据

- 在Quartus项目中添加一个Signaltap文件
- 观测感兴趣的FPGA内部信号
- 从 Matlab 读取 signaltap 数据文件
- 使用Matlab绘制信号分析曲线图形

Quartus 项目介绍

- 使用DDS参考设计
- 基于DE0开发板
- 3个按键
 - BUT2 频率降低 - BUT1 频率增加 - BUT0 复位电路
- 首先创建Signaltap文件 - 按下不同按键 - 观察STP文件中的信号波形

Instance R auto s	Status	LEc: 1057					
_	. Not running	1057 cells	Memory: 36864 368640 bits	Small: 0, 0 blocks De	rdware: USB-Blaster [USB- vice: @1: EP3C16/EP40	0] CE15 (0x020F20I	Setup Scan Cha
•				•	> SOF Manager: 🔔 🕕	rd_carrier/top_sin	_wave.sof
log: 2015/0	6/04 16:15:26 #0			clic	k to insert time bar		
Type Alias	Name	-4080	-4064 -4	048 -4032	2 -4016 -4000	-3984	-3968
<u>i</u>	GFQWD FG	2VVD			0A3D70A2h		
**	E-SINOUT		\frown		\nearrow	\frown	
		•					

MATLAB读取Signaltap文件

- 环境配置
 - 创建Signaltap的MEX文件
 - -32 ($\dot{\Omega}$ Quartus :
 - •目录 C:\altera\13.1\quartus\bin
 - •复制 alt_signaltap_run.dll 改名为alt_signaltap_run.mex
 - 64位Quartus:
 - 目录C:\altera\13.1\quartus\bin64
 - •复制alt_signaltap_run.dll 改名为alt_signaltap_run.mexw64
 - 路径设置
 - •在Matlab代码的开头,需要添加路径
 - 把Quartus的路径 例如 C:\altera\13.1\quartus\bin64
 - •添加到Window的系统路径
 - •添加到Matlab路径

% 得到 Window的系统路径到 wp变量 wp = getenv('path'); % wp is windows path % 设定quartus的路径变量 $qp = c:\\lambda tera \13.1\guartus\bin64';$ % 使用正则表达式 % 检查qp路径是否已经在wp路径中 is_qp_in_path = regexp(wp,qp); if(isempty(is_qp_in_path)) %添加qp路径到系统路径 setenv('path', [wp ';' qp]); end

%添加qp路径到Matlab路径 addpath(qp);

MATLAB代码要点

%根据STP文件的完整路径文件名称 %运行一次 Signaltap 抓取数据 data stp = alt signaltap run(stp f dir n); % 绘图并得到句柄h h = plot(y);% 指定h绘图句柄的 Y轴数据源来自向量 y set(h,'YDataSource','y'); % 命令绘图句柄刷新数据源 refreshdata; %命令图形曲线立即重绘 drawnow;

运行DEMO程序

spectrogram_signaltap.m 绘制频谱3D 瀑布图 spectrum_signaltap.m 绘制2维 频谱图

LAB 3

- MATLAB 使用JTAG Bridge 读写FPGA
- 本实验必须安装DSP Builder
- 必须从DSP Builder 启动 Matlab
- 首先从Quartus 下载 LAB 3的 SOF文件
- 然后,运行LAB3的M文件

- 观察MATLAB 命令行窗口
- M 程序会打印检测JTAG的信息
- 正常运行后, M 程序 每秒刷新一下LED
- 每秒读取一次SW[7:0]的值并打印

Refreshing
05, 2015 7:53:16 com.altera.systemconsole.internal.core.SystemConsole logInfo
INF0: Finished discovering JIAG connections
05, 2015 7:53:22 com.altera.systemconsole.internal.core.SystemConsole logInfo
INFO: Finished discovering USB connections
Found 1 path(s).
Index Path
1 '/devices/EP3C16 EP4CE15@1#USB-0/(link)/JIAG/(110:132 v1 #0)/phy_0/master'
Found Jtag Bridge
Open Bridge Master
Open Success
<pre># Write LED[7:0] val 0x00, SW[7:0] read val 0x01</pre>
Write LED[7:0] val 0x01, SW[7:0] read val 0x01

参考文献:

Altera White Paper, WP-01208 Hardware in the Loop from the MATLAB/Simulink Environment, Page 4, Matlab API 关键代码:

SystemConsole.refreshMasters; % 刷新当前连接的JTAG Master

```
M = SystemConsole.openMaster(1); % 启动连接 FPGA 目标板
M.write('uint32',write_address,data); % 向 Avalon 总线的地址写数据
data = M.read('uint32',read_address,size); % 从 Avalon 总线地址读取数据
M.close; % 关闭 FPGA 连接
```